GreatHearts[®]

Algebra 1

April 6 – April 9

Time Allotment: 40 minutes per day

Student Name: _____

Teacher Name: _____

Teacher emails: <u>Vanessa.steger@greatheartsnorthernoaks.org</u> and

<u>melanie.brintnall@greatheartsnorthernoaks.org</u>. Ms. Brintnall will be teaching Mrs. Chubb's Algebra 1 class for the remainder of the school. If you were in Mrs. Chubb's class, you should email Ms. Brintnall for help if needed!

GreatHearts[®]

Packet Overview

Date	Objective(s)	Page Number
Monday, March 30	Students will be able to solve quadratic equations by completing the square. (12-2)	
Tuesday, March 31	Students will be able to solve quadratic equations by completing the square. (12-2)	
Wednesday, April 1	Review: Completing the square	
	Minor Assessment	
Thursday, April 2	Students will be able to solve quadratic equations using the quadratic formula. (12-3)	
Friday, April 3	No school	

Dear Algebra 1 students,

We hope that everything is going well with you and your families. Once again, it was great to hear from many of you last week! We enjoy answering your questions – keep asking away!

This week, you will continue to solve quadratic equations. On Monday and Tuesday, we will be covering a method of solving quadratic equations called "Completing the Square". While this corresponds to section 12-2 of our textbook, we will be using a different method than the one outlined there. We have recommended videos for these days that will supplement the guided notes provided.

We are also excited to offer Office Hours through Zoom this week! Your parents will receive a schedule via email with further details about how to log on. However, write down the time slot for your class period so you know when it takes place:

Class	Day/Time
1 st Period Ms. Steger	Monday & Wednesday, 10:00 – 10:50am
2 nd Period Ms. Steger	Monday & Wednesday, 11:00 – 11:50am
3 rd Period Ms. Brintnall	Monday & Wednesday, 1:00 – 1:50pm
4 th Period Ms. Brintnall	Tuesday & Thursday, 10:00 – 10:50am

Know that we are thinking of you as you continue learning remotely! No question is too small, so *please* send us an email if you are wondering about anything! We would love to hear how you are doing 😇

With much love,

Ms. Stegen

and Ms. Brinthall

GreatHearts®

Just like previous weeks, to start, gather pieces of loose-leaf and STAPLE them together (any kind of lined paper or graph paper will do – you will only need about 10 sheets this week). Put your name on the very top of EVERY PAGE (front and back) of these loose-leaf papers, just like you did last week.

This is the equivalent of your notebook during class, and we will refer to it throughout this packet as you "loose-leaf packet." We will ask you to write certain problems with particular titles, and all of this will be done in that loose-leaf packet. At a later point, we will ask you to turn in that loose-leaf packet. Do not worry right now about whether that will be online or in person, simply do the problems as we instruct with the proper titles and labels.

□ *I have gathered around 10 pieces of lined paper, put my name at the very top of every sheet on both the front and the back, and stapled them. I am ready to go!*

"Do not worry about your difficulties in Mathematics. I can assure you mine are still greater." Albert Einstein

Academic Honesty

I certify that I completed this assignment independently in accordance with the GHNO Academy Honor Code. Right now in my Algebra I class, this means that I will NOT use a calculator except to check my answers when I am finished with them.

Student signature:

I certify that my student completed this assignment independently in accordance with the GHNO Academy Honor Code. Right now in this Algebra I class, this means that the student will NOT use a calculator except to check answers when finished with them.

Parent signature:

Monday, April 6

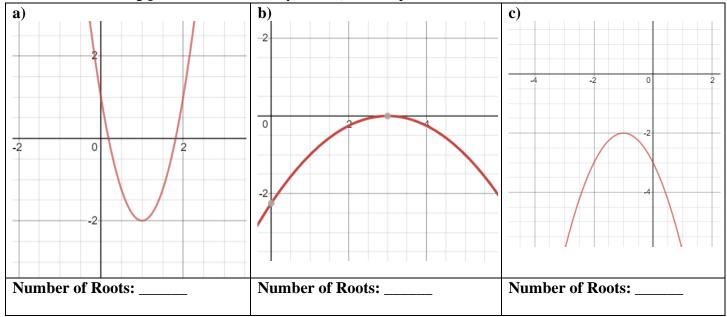
Algebra 1 Unit: Quadratic Equations Lesson 1: 12-2 Completing the Square

Objective: Solve quadratic equations by completing the square.

NOTES TITLE: (This will appear at the beginning of each lesson so you can title your notes for the day.)

Your Name

Lesson 1: 12-2 Completing the Square

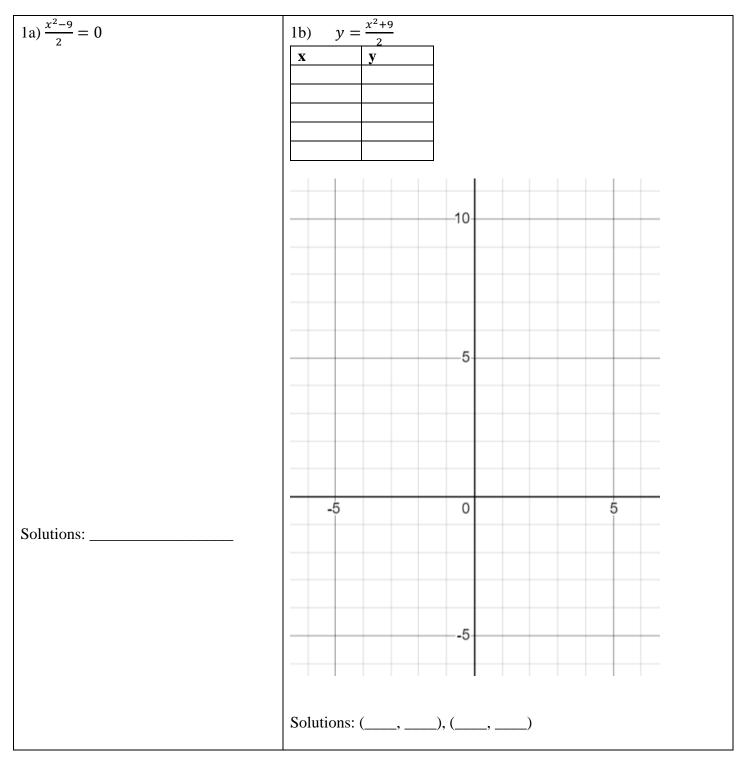

Bellwork: Review vocabulary.

- 1. What is a solution?
- 2. List 3 synonyms for "x-intercept":
 - •
 - •
 - _____

Check your answers on Day 1 of the answer key.

Number of Roots:

Look at the following parabolas. How many roots (x-intercepts, solutions, zeros) does each one have?



GreatHearts[®]

GreatHearts[®]

Activity #1

For the following equations, solve the equation using SADMEP (just like you practiced on Friday). Then, plug in 5 different values for x to complete the table of values to graph the equation. Fill in the blanks underneath the graph with the coordinates for the x-intercepts. Use your loose-leaf packet for scratch work. HINT: When choosing inputs to use, look at the graph given. Choose values along the x-axis!

GreatHearts[®]

$2a) - (x - 5)^2 + 9 = 0$	2b) $y = -6$	$(x-5)^2 + (x-5)^2$	9		
	X	У			
	0		10	20)
	-10				
Solutions:					
	-20				
	Solutions:	(,	_), (,	_)	

3) What was the difference in the equations given in part a) vs. part b) questions 1 and 2 above?

4) What do you notice about the solutions you found for part a) and part b) for questions 1 and 2 above?

5) When we find the solutions to a quadratic equation, we are actually finding the (circle one): (a) y-intercepts (b) vertex (c) x-intercepts (d) axis of symmetry Algebra 1

March 30 – April 3

Activity #2

Solve in you loose-leaf packet. HINT: Start by factoring the left side of each equation.

		1
1. $x^2 + 14x + 49 = 36$	2. $25c^2 - 10c + 1 = 16$	3. $x^2 - 2x + 1 = 12$

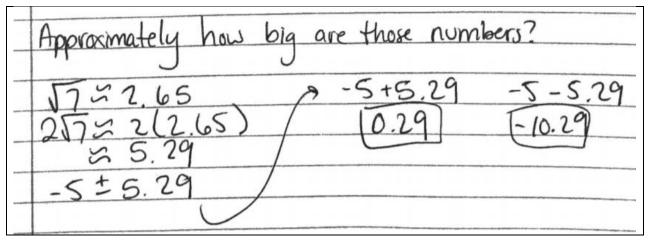
4. What factoring pattern appeared in both 1) and 2) above?

NOTES: Completing the Square - Part I

Copy the three examples (not the written notes) into your notes packet. The following video will help you: https://www.youtube.com/watch?v=OZNHYZXbLY8

	In Activity #2 #1-3, we had perfect square trinomials that
	we could factor, This made it very easy to solve, because
	we could factor. This made it very easy to solve, because we could take the square root of a binonomial squared
41-11 A.W.	
	Let's look at the following equation:
	Jt
Ex.1	$x^{2} - 4x + 3 = 80$ x - 2
~	$\times \times -2x$
	We can try to factor, -2 -2x (4)
	but it's not a PST! In order for it to be a PST, we
A REAL PROPERTY OF A LOSS BRAN	would need a 4, not a 3, in the bottom left corner

GreatHearts[®]


We don't corrently have a PST, but we could create one both sides! Remember, whatever we by adding to do to one side, we must do the other! $x^{2} - 4x + 3$ to = 80 t Factor. =8 -4x + 481 Take the square root of both sides, Account for both solutions. x - 2 = -9x - 2 = 9+2 +2 +2+2 Final Answer x = -72nd example. 6.2 Let's look at a to build a PST on the I want x2 -lex =left. I know that PSTs always have matching × -3 the top boxes m X2 -3x right / bottom left. -3 -3x SS, I can take the - lox middle term and evenly split it in half. Then, I notice that the binomials must be x-3 box has mean the final That would and 9 To a X. -3

Algebra 1 March 30 – April 3

GreatHearts[®]

However, I don't have a 9 there. So, I must add one to both sides to complete the perfect square. $^{2}-6x = -8$ +9 +9 Now, Factor, - 6x+9 = 5 X-3= X-3 = x=2 X=4 Once again, we want to build a $5x,3 \times^2 + 10x - 3 = 0$ PST. Sx We will have (x+5)(x+5) and need to have 25 in the last box. However, we currently have -3. What do we need to add to both sides so that the constant term is 25? $x^{2} + 10x - 3 = 0$ Add 28 to both sides. +28 +28 $v^{2} + 10x + 25 = 28$ Factor, Take the square root of both = 28 (X+5 sides. = 128 (x+5)2 = 54.57 X+S Account for both solutions. X+5 = 257 X+5=-257 X+5=257 -5 -5 x = -5 - 257x = -5 + 257OR, we can combine them to write X = -5 = 2,57

GreatHearts[®]

Daily Practice: Solve the equations by completing the square in your notes packet.

1) $x^2 - 4x = 1$	2) $c^2 + 18c - 175 = 0$	3) $v^2 - 20v + 19 = 0$

When finished, check your answers with the answer key in the back of the packet. My questions at the end of Algebra 1 Lesson 1 (if any):

· · · · ·	
What action are you going to take to try to answer	I have completed all parts of today's lesson,
these questions?	checked my answers, recorded my questions (if
\Box Ask my parent or family member.	any), and made a plan for answering my
□ Have my parent help me email Ms. Steger or	questions if needed. I am finished with Lesson
Ms. Brintnall.	1 of Algebra 1 for Monday, March 30 th !
\Box I may have to hold on to this question for a later	
time.	

Tuesday, April 7

Algebra 1 Unit: Quadratic Equations Lesson 2: 12-2 Completing the Square (Continued)

Objective: Solve quadratic equations by completing the square.

NOTES TITLE:

Your Name

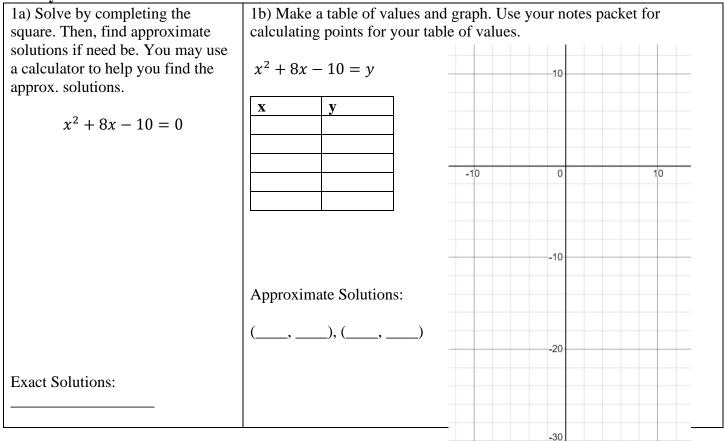
Lesson 2: 12-2 Completing the Square

Algebra 1

March 30 – April 3

GreatHearts[®]

Bellwork:


Look at the work in the simplifications below. Each has an error leading to the wrong value for y. Find it!

D	Equation: $-x^2 - 3x + 5 = 9$	@ Equation: 3x2-2x-1=4
	Input: -4	Input: -1
P	$-4^2 - 3 + 5 = 4$	3(-1) - 2(-1) - 1 = y
	110 + 12 +5 = 33	3-2-1=0
1	14=33	(y=0)
		1. 3
Error #1:		

Error #2:

Check your answers with the answer page at the back of the packet.

Activity #1

Approximate Solutions:	

We sometimes get exact solutions to quadratic equations. However, we often get irrational solutions, as in questions 1a) and 1b) above. When this happens, we can estimate to know *approximately* the values of the solutions.

NOTES: Completing the Square - Part II

Copy the examples (not the written notes) into your notes packet. The following video will help you: https://www.youtube.com/watch?v=bjH1HphOZ1Y

Ex. 1 $x^2 + 3x + 4 = 2$ Method #1: $x - \frac{3}{2}$ $x - \frac{3}{2} - \frac{3}{2}$	
x+== = z x+=== = z solve, ===== z = z ===== x = z (x====================================	
2 (x ² + 3x + 4)= (2) 2 want fractions. So, let's try multiplying 2x ² + 6x + 8 = 4 both sides by 2 so our middle 0 J3x ferm (the "b" term) has an even coefficient! 3x 3x be can divide be into 2 graps of 3x! Problem: 2x ² isn't a perfect square. We can't put the Same ferm where I've drawn circles.	

GreatHearts[®]

isn't a 2x2 perfect = 2 Hom +3x + 4 savare Ч both side erm OUT 2x +3 and square middle (oction) 2χ even has both sides to Subtract x2+12x +16= 8 mplet square the Factor Take the square root both sides of 2X+ - 3 Final Answer

Remember, it is very helpful to multiply both sides of an equation by 4 so that "b" is even.

Practice #1: Try one on your own! Solving by completing the square.

 $x^2 - 3x - 18 = 0$

See the answer page at the back of the packet to check your work.

NOTES (Continued)

GreatHearts[®]

Remember, the general form for a quadratic equation is ax2 + bx + c. So for, we have completed the square for equations in which a=1. Let's look at an example in which at 6x.2 3x2-5x+6=4 We see that "b" is odd, so we can multiply both side $4(3x^2-5x+6) = 4(4)$ by 4. 12x2-20x+24 = 16 However, 12x2 is not a perfect spice -10x 12x Let's break it down to see its factors: 10x $12x^2$ 4 x2 22 $12x^2 - 20x + 24 = (16)3$ 4x2 is a perfect square, but the 36x2-60x+72=48 3 is preventing the term from being lox - 5 a perfect square. Note that the Lex 36x is our "a" value - it comes from 25 initial equation. If we had 32 it would be a perf. sq. So, let's multiply 36x2-60x+72=48 both sides by 3 as well. 3/022 is perfect square. Then, we can solve by $36x^2 - 60x + 25 =$ completing the squar ex-5 6X-5=-6x-5=1 lex = 6x=4 X=1-6x-5=-1 6x-5=1

Practice #2: Try one on your own! Solving by completing the square. HINT: You will get an irrational answer for this one (note, I will not always tell you when you will get an irrational answer!). Find **both** the **exact AND approximate values** for your solution. You may use a calculator to help you find the approx. value.

 $5x^2 + 8x + 1 = 0$

See the answer page at the back of the packet to check your work.

Daily Practice: Solve each equation in your notes packet. Remember, multiply both sides by 4, *a*, or 4*a* as needed to complete the square. HINT for #3: Subtract 2*m* from both sides so all variable terms are on the left!

1) $3a^2 - 7a = 6$	2) $6n^2 - 10n = -4$	3) $3m^2 - 12 = 2m$

At this point, check in with yourself – do you have any questions about this content or these problems right now? If you do, write those questions here:

My questions at the end of Algebra 1 Lesson 2 (if any):

 What action are you going to take to try to answer these questions? Ask my parent or family member. Have my parent help me email Ms. Steger or Ms. Brintnall. I may have to hold on to this question for a later time. 	I have completed all parts of today's lesson, checked my answers, recorded my questions (if any), and made a plan for answering my questions if needed. I am finished with Lesson 2 of Algebra 1 for Tuesday, March 31 st !

GreatHearts[®]

Wednesday, April 8

Algebra 1 Unit: Graphing Quadratics Lesson 3: Completing the Square: Review and Quiz

Objective: Solve quadratic equations by completing the square.

NOTES TITLE:

Your Name

Lesson 3: Completing the Square Practice

Practice #1:

In your loose-leaf notes, complete p.563 #6-24 mult. 6 and #36 for practice on 12-1.

□ *I have completed these problems to the best of my ability.*

Now, check your answers with the answer sheet at the end of the packet. *If you got any wrong, try to find the source of your error and correct it.* This does not need to be done in a different color, unless that helps you.

Practice #2:

In your loose-leaf notes, complete p.566 #10, 11, and 17. Solve by completing the square.

□ *I have completed these problems to the best of my ability.*

Now, check #10 with the answer in the back of the packet and #11 and #17 with the back of your textbook. *If you got any wrong, try to find the source of your error and correct it.* This does not need to be done in a different color, unless that helps you.

Minor Assessment (Quiz)

Please read these boxes carefully before starting on the minor assessment.

- □ I understand that I am NOT allowed to use this packet during my quiz.
- □ I understand that I am NOT allowed to use my own loose-leaf packet during my quiz.
- □ I understand that while Ms. Steger and Ms. Brintnall estimate that the quiz will take 15 minutes, it is okay to spend the time I need.
- □ I understand that I am NOT allowed to ask a parent, family member, or friend for help during my quiz.
- □ I understand that I am NOT allowed to use the internet or any other resource to help with my quiz.

Once you have read through the above statements and checked each box, you may turn the page to begin your quiz. By signing the academic integrity statement on page 2 of this packet, you are saying that you completed the quiz on your own and without use of your notes.

GreatHearts[®]

Ch. 12 Quadratics Quiz #2

Solve BOX your final answers

Solve. BOX your final answers.	
1. $9r^2 = 121$	2. $(x-4)^2 = 8$
3. Find both <i>exact</i> solutions to $a^2 - 12a + 35 = 0$ by <i>completing the square</i> . If your answer is irrational, write in simplest radical form. You do NOT need to approximate. BOX your solutions.	4. Find both <i>exact</i> solutions to $2x^2 + 3x = 9$ by <i>completing the square</i> . If your answer is irrational, write in simplest radical form. You do NOT need to approximate. BOX your solutions.

Once you've finished the quiz, you are done with Algebra I for Wednesday, April 8!

GreatHearts[®]

Thursday, April 8

Algebra 1 Unit: Graphing Quadratic Equations Lesson 4: 12-3 The Quadratic Formula

Objective: Solve quadratic equations by using the quadratic formula. (12-3)

NOTES TITLE:

Your Name

Lesson 4: The Quadratic Formula

Today, you will be reading and taking notes on how to derive the **quadratic formula**! This will look confusing at times. However, follow the directions given for notetaking, and read the notes through a second time if need be. Today, your goal is to see how we have a quadratic formula. Next week, you will do more practice so that you can use it effectively.

Let's look at a particular	quadratic equation:
$2x^2 - 3x - 3$	2=0
What are a, b, tc? a is 2, b is -3, and c is	-2. Over the past few days,
this problem together. I will in two columns. Copy both explanation columns into you	e square. We will walk through Il write very specific notes the procedure and r notebook. Remember, the goal is to isolate x.
Procedure	Explanation
1. $2x^2 - 3x - 2 = 0$ 2. $8(2x^2 - 3x - 2) = (0) 8$	1. The original equation is set equal to zero. 2. Multiply both sides by 4a. (In this case, 4a=4-Z=8)
3. $ l_{0}\chi^{2} - 24\chi - l_{0} = 0$ $4\chi - 3$ $4\chi l_{0}\chi^{2} - l_{0}\chi$ $-3 - l_{0}\chi - 12\chi$	3. Factor to complete the square/build a PST.

GreatHearts°

	$16x^2 - 24x - 16 = 0$	
	T25 +25	
	$\frac{16x^{2} - 24x + 9}{(4x-3)^{2}} = 25$ $\frac{(4x-3)^{2}}{(4x-3)^{2}} = 5$	
4.	$(4x-3)^2 = 25$	4. Factor.
S.	$(4x-3)^2 = (25)^2$	5. Take the square root of
		both sides
6	4x-3 = 5	6. Account for both
	1 / V	solutions.
	4x-3=5 $4x-3=-5+3+3 +3 +3 +3$	
	4x - 8 $4x = -2[x=2] [x=-\frac{1}{2}]$	
	(X = 2)	
(Pause no	otessimply read the next part!)	
spec their star pro rem	thematicians strive to take proce ific situations and generalize the se processes in a universal way, indicated form for a quadratic cess we just did, and see who nember our goal? Isolate x! ote: For this one, copy the procedure the explanation.	so they can describe So, let's take the equation, follow the same at results. Before we begin,
	1	

GreatHearts°

Procedure	Explanation
$\int ax^2 + bx + c = 0$	1. The standard form of the
	quadratic equation is set equal to O
2. $4a(ax^{2}+bx+c) = O(4a)$	2. Is "b" even or odd? Is "a" a
$4a^2x^2 + 4abx + 4ac = 0$	perfect square? We don't know
zax by	So we must multiply by 4a.
3. $2ax 4a^{2}x^{2} 2abx$ b $2abx 6^{2}$ we need a be square! 4. $4a^{2}x^{2} + 4abx + 4ac = 0$	3. Factor to complete the square
6 Zabx (b2) we need the the	build a PST.
	4. Add be to both sides a
$+b^{2}+b^{2}$	group the terms so they
$(4a^2x^2 + 4abx + b^2) + 4ac = 6^2$	form a PST we can factor.
5. $(2ax+b)^2 + 4ac = b^2$	S. Factor.
6 Hac - Hac	le Remember, our goal is to
$(2ax+b)^2 = b^2 - 4ac$	isolate x. Follow SADMEP \$
	subtract 4ac from both sides
7. $(2ax+b)^2 = (b^2 - 4ac)$	7. Our equation may look
	strange, but we follow the
2ax+b = 162-4ac	- same next step - take the
- L'N	square root of both sides
	8 Account for both all the
8 2axtb = 102-4ac 2axtb=-162	-440

GreatHearts[®]


Zax +6 = 162-4ac 9. Solve. 2-4ac -Hac 2-4ac 2-4ac 2-400 our answers to write it as can combine we $x = -b^{\pm}$ b2-4ac 2a We arrived at the quadratic formula! If you would like a video explanation as well, click here: https://www.youtube.com/watch?v=eDwi96DCdTc It is a universal formula: THIS is the quadratic always give us the roots to a equation that wal that the equation is set quadratic equation (assuming) to zero PU et's try it out with our 1st example from today your notes: into this $x = -b^{\pm} \sqrt{b^2 - 4ac}$ -3x-2=0 2× 20 values to plug in Simplify -3)2-4(2)(-2) $x = -(-3)^{+}$

Algebra 1 March 30 – April 3

GreatHearts[®]

= 3± [9+16		
3± 25 4		
$= 3 \pm 5 \text{Now, we acco}$ $= 3 \pm 5 \text{Now, we acco}$ $= 3 \pm 5 \text{H}$	x = 3 - 5	<u>ა.</u>
$\begin{array}{c} x = 8 \\ 4 \\ \overline{x = 2} \end{array}$	$x = \frac{-2}{4}$	
ofice, we get the same completed the square!		got then we

Write the quadratic formula in this box:

Now, solve the following quadratic equation using the quadratic formula. Check the answer on the next page when finished.

$x^2 - 3x - 1 = 0$	
<i>a</i> =	
<i>b</i> =	
<i>c</i> =	
	Solutions:

Answer: $\frac{3\pm\sqrt{13}}{2}$ (Approximately 3.3 and -0.3)

At this point, check in with yourself – do you have any questions about this content or these problems right now? If you do, write those questions here:

My questions at the end of Algebra 1 Lesson 4 (if any):

What action are you going to take to try to answer	□ <i>I have completed all parts of today's lesson</i> ,
these questions?	checked my answers, recorded my questions (if
\Box Ask my parent or family member.	any), and made a plan for answering my
\Box Have my parent help me email Ms. Steger or	questions if needed. I am finished with Lesson
Ms. Brintnall.	<u>5 of Algebra 1 for Friday, April 3rd!</u>
\Box I may have to hold on to this question for a later	
time. (At this point in the week, it is probably	
not a good idea to hold onto a question, unless	
it is more of an extension question that you are	
just curious about).	

Great work this week! Enjoy a restful four days with your family! 😳 😳

~ Ms. Steger and Ms. Brintnall

GreatHearts°

Answer Key for All Lessons

T 1		
Lesson 1 –	Bellwork:	
12-2	Solution – a value that makes a statement true	
Completing the Square	Synonyms for "x-intercept" – root, zero, solution	
-	Number of Roots:	
	a) 2 (the parabola crosses the x-axis at two points)	
	b) 1 (the parabola touches the x-axis at one point)	
	c) 0 (the parabola will never touch the x-axis)	
	Activity #1:	
	1a) $x = \pm 3$ 1b) (-3, 0), (3,0)	
	$\begin{array}{c} 1a) & x \\ 2a) \{2, 8\} \\ \end{array} \begin{array}{c} 2b) (2, 0), (8, 0) \\ \end{array}$	
	3) In part a, each equation was set equal to zero. By using PEMDAS, we found the two	
	solutions to x. In part b, the equation was set equal to y. We found ordered pairs, and then	
	found the solutions by looking at the x-intercepts.	
	4) We arrived at the same values for the solutions! The solutions for 1a) and 1b) were	
	both ± 3 , and the solutions for 2a) and 2b) were both 2 and 8.	
	5) c	
	Activity #2:	
	Activity #2. 1) $x = -1, x = -13$	
	1)x = -1, x = -13	
	2) $c = 1, c = -\frac{3}{5}$	
	3) $x = 1 \pm 2\sqrt{3}$	
	4) Perfect Square Trinomial (PST)	
	Daily Practice:	
	1) Exact: $\{2 - \sqrt{21}, 2 + \sqrt{21}\}$; Approximate: $\{6.6, -2.6\}$	
	2) {-25, 7}	
	$3) \{1, 19\}$	
Lesson 2 –	Find the error:	
12-2	\bigcirc Equation: $-x^2 - 3x + 5 = y$ \bigcirc Equation: $3x^2 - 2x - 1 = y$	
Completing		
the Square	Should Input: -4 J Input: - Negative Negative	
(Continued)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
	-16 - 10 + 12 + 5 = 33 + 2 - 1 = 84	
	y=33 $ y=8 4$	
	Activity #1:	
	1a) Exact: $\{\sqrt{26} - 4, -\sqrt{26} - 4\}$; Approximate: $\{1.1, -9.1\}$	
	1b) Approximate: {1.1, -9.1} (as long as your appriximation is close, you're correct!)	

GreatHearts°

	Practice #1
	$\begin{array}{c} x^{2} - 3x - 18 = 0 \\ 4(x^{2} - 3x - 18) = 0(4) \\ 4x^{2} - 12x - 72 = 0 \\ \hline 2x - 3 \\ \hline -3 - 6x 9 \end{array} \xrightarrow{to go} from -72 to 9, \\ \hline -3 - 6x 9 \\ \hline we must add 81 to both sides. \\ \hline 4x^{2} - 12x - 72 = 0 \\ \hline -3 - 6x 9 \\ \hline 13 + 5 \\ \hline -3 - 6x 9 \\ \hline -3 - 72 \\ $
	$4x^{2}-12x+9=81$ [x=6] $2x=-6$ [x=-3]
	Practice #2 NOTE: I multiplied both sides by <i>a</i> , which equals 5. If you multiplied both sides by 4 <i>a</i> , or 20, you would ultimately arrive at the same answer. $5 (5\chi^2 + 8\chi + 1) = 0)5 (5\chi + 4)^2 = 11$ $25\chi^2 + 40\chi + 5 = 0$ $5\chi + 4 = 5\chi + 4 = -11$ $5\chi + 4 = 5\chi + 4 = -11$ $5\chi + 4 = 5\chi + 4 = -11$ $4 = -4 = -4 = -4$ $25\chi^2 + 40\chi + 5 = 0$ $5\chi = 5\chi + 4 = -11$ $5\chi = -11 = -4$ $25\chi^2 + 40\chi + 5 = 0$ $5\chi = 5\chi = -11 = -4$ $5\chi = -11 = -4$ $5\chi = -11 = -4$ $5\chi = -1.46$ Representation in the second state is a second state in the second
	Daily Practice: $(1+\sqrt{27})$
	1) $\left\{3, -\frac{2}{3}\right\}$ 2) $\left\{1, \frac{2}{3}\right\}$ 3) <i>Exact</i> : $\left\{\frac{1\pm\sqrt{37}}{3}\right\}$; <i>Approx</i> .: $\{-1.69, 2.36\}$
Lesson 3 –	Practice #1: p.563 #6-24 mult. 6 & #36
Solving Quadratics Practice	6) $\{\pm\sqrt{26}\}$ 12) $\{\pm\sqrt{6}\}$ 18) $\{-2\pm2\sqrt{3}\}$ 24) $\{-5\pm\sqrt{7}\}$ 36) $\{\frac{-10\pm\sqrt{3}}{5}\}$
	Practice #2: p.566 #10, 11, 17
	10) <i>Exact</i> : $\left\{\frac{\sqrt{13}-1}{2}, \frac{-\sqrt{13}-1}{2}\right\}$; <i>Approx</i> .: $\{-2.3, 1.3\}$ 11 & 17 are in the back of your text.