GreatHearts[®]

Algebra 9:

April 6 - 9

Time Allotment: 40 minutes per day

Student Name: _____

Teacher Name: Mrs. Hudson

Melanie.Hudson@GreatHeartsNorthernOaks.org

Zoom Office Hours: 10:00-10:50 am on Monday and Wednesdays starting on Monday April 6th

Chapter 10: Inequalities

Packet Overview

Date	Objective(s)	Page Number
Monday, April 6	Chapter 10-5: To solve equations and inequalities involving absolute value.	2-5
Tuesday, April 7	Chapter 10-5 continued: To solve equations and inequalities involving absolute value.	6-8
Wednesday, April 8	Chapters 10: 1-6 Review	9-11
	Graphing Linear Equations Review	
Thursday, April 9	Chapter 10: 1-6 Quiz	12
	Chapter 10-7: Be able to graph linear inequalities in two variables.	13-15
	Test Friday, April 17 th on 10-1 through 10-8	
Friday, April 10	No school Holiday	

Additional Notes:

- **Materials:** Printed packet or notebook paper; pencils. (Calculators not needed).
 - Note: If you are using notebook paper, be sure to write the pages and numbers of the material.
 - **Example:** P. 6; #1)_____
- * Answers are given at the end of each assignment.
- Quiz: Located on pages 15-16. This should be taken *without* looking at previous work. No answers are provided for the quiz.

Academic Honesty

I certify that I completed this assignment independently in accordance with the GHNO Academy Honor Code. I certify that my student completed this assignment independently in accordance with the GHNO Academy Honor Code.

Student signature:

Parent signature:

GreatHearts®

Monday, April 6

Algebra Unit: Inequalities

Unit Overview: Inequalities

We are now starting Chapter 10, Inequalities. In this chapter, you will:

- 1) Review the concept of order and to graph inequalities in one variable,
- 2) Transform inequalities in order to solve them,
- 3) Solve problems that involve inequalities,
- 4) Find the solution sets of combined inequalities,
- 5) Solve equations with inequalities involving absolute value,
- 6) Extend your skill in solving open sentences that involve absolute value,
- 7) Graph linear inequalities in two variables,
- 8) Graph a solution set of a system of two linear inequalities in two variables.

Lesson 10-5: Absolute Value in Open Sentences

Objective: Be able to solve equations with inequalities involving absolute value.

- > Hello! I hope that you are all doing well. I really miss working with you in class!
- > Today, we are starting with lesson 10-5. Let's get started \bigcirc .
- **Reminder:** |a| is the distance between the graph of a number a and the origin (0) on the number line.
- •

Given	Graph	Word Sentence about the distance between numbers.	Answers
1) $ x = 4$	<	The distance between x and zero in 4 (4 right and 4 left).	x = 4 and $x = -4$
2) $ y = 3$ Your turn!	<+++++++++++>		

3) <i>r</i> ≥ 5	These are GREATER than 5 hops from zero, so they point out.	The distance between r and zero is greater or equal to 5.	$r \ge 5 \text{ or } r \le -5$ (Notice that the > <i>switched to</i> < when the sign changed).
4) <i>p</i> < 3	These point inward because there must be LESS than 3 hops.	The distance between p and 0 is less than 3.	 p < 3 AND p > -3 (Notice that the < switched to > when the sign changed). "AND" is used because the lines join. With "AND," the answer is written like this: -3
5) $ m < 2$ Try the next two.	<+++++++++++>		
6) n ≥ 2	<++++++++++>		
7) $ n-1 \leq 3$ If you set the n-1=0 n=1 Then, 1 is where you start.	543-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	The distance between n and 1 is less than or equal to 3.	$n-1 \leq 3 \text{ AND } n-1 \geq -3$ (Notice that the signs changed). $n \leq 4 \text{ AND } n \geq -2$ $-2 \leq n \leq 4$
8) n - 2 > 3 Give it a try!	<++++++++++>		

9) v + 5 > 2 v + 5 = 0 v = -5	← → 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2	The distance between v and -5 is greater than 2.	 v + 5 > 2 OR v + 5 < -2 Notice that the first inequality is the same as what was given except it doesn't have absolute value signs. Also, the >< switched as well as the signs. Solve: v > -3 OR v < -7
v + 5 < 2 Similar yet different!	<+++++++++++>		
$ \begin{array}{c} 11) \\ 4 \leq 1 - s \\ 1 - s \geq 4 \\ 1 - s = 0 \\ + s + s \\ 1 = s \end{array} $	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	The distance between s and 1 is greater than or equal to 4.	$1 - s \ge 4 OR \ 1 - s \le -4$ Solve: $-s \ge 3 or - s \le -5$ *Reminder: if you multiply or divide both sides by a negative, flip the signs! $s \le -3 or \ s \ge 5$
12) 3 > 2 - q	<+++++++++++>		
$\begin{vmatrix} 13 \\ 1 > 2 + m \\ 2 + m < 1 \\ 2 + m = 0 \\ m = -2 \end{vmatrix}$	<	The distance between m and -2 is less than 1.	2 + m < 1 and $2 + m > -1m < -1$ and $m > -3-3 < m < -1$

March 30-April 3

GreatHearts[®]

- v < -3 (12) -1 < q < 5 (14) $w \le -11$ or $w \ge 5$
- Now, complete the ORAL EXCERISES #13-18 on p. 484. (Here or on loose-leaf).

13)	14)	15)
10	17)	10)
10)	1/)	18)

Answers: (13) f (14) a (15) e (16) d (17) b (18) c

Tuesday, April 7

Algebra Unit: Inequalities

Lesson 10-5 Continued: Absolute Value in Open Sentences

Objective: Be able to extend your skill in solving open sentences that involve absolute value.

- Yesterday, we learned about the meaning of absolute value equations. Today, we will learn the simple way to solve them!
- > Look at the equations that were written in yesterday's chart. Do you see the similarities?

March 30-April 3

Answers: (2) $\{7, 11\}$ (6) $-7 \le b \le 5$ or $b \ge -7$ and $b \le 5$

> The next step is that you must isolate the absolute value before you write two equations.

7) $4 p - 1 < 15$	8) $ 2-q -3 < 1$
+1 +1	+3 +3
$\begin{array}{l} 4 p < 16 \\ \div 4 & \div 4 \end{array}$	2 - q < 4
p < 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Now you can write two inequalities and solve:	$-q < 2 \qquad -q > -6$
p < 4 and $p > -4$	q > -2 and $q < 6$
	Note: if you aren't sure if it is AND or OR, plot them on a number line.
	10) 0 11
9) $4 - 3 y < 1$ -4 -4	10) $8 - 1 - x > 7$
-3 y < -3 $\div -3 \qquad \div -3$	
y > 1	
y > 1 or y < -1	

Answer: (10) The numbers are between 0 and 2. x > 0 and x < 2 or 0 < x < 2

> Your assignment:

- p. 485 #13-27 odd, on the next page or on a piece of loose-leaf paper.
- Be sure to use a pencil, show the steps, and graph the solution set.
- Check all answers in the back of the book.
- Correct your work with a red pencil.

March 30-April 3

GreatHearts°

13)	15)
15)	15)
17)	19)
21)	23)
, ,	
25)	27)
23)	

Reminder: Check and fix your answers 😇. Odd questions have answers in the back of the book.

Wednesday, April 8

Algebra Unit: Inequalities

Lesson: Review 10:1-6 Review graphing of linear equations.

- **Objective:** Be able to solve inequalities and inequalities with absolute value. Be able to write and graph linear equations.
 - First, we will review sections 1-5 and complete a few questions from section 6.
 - ➤ Turn to page 489 and work on the "Self-Test" #'s 1-12

1)	2) ReminderWrite two separate inequalities $-2 \le y + 4 < 5$ $-2 \le y + 4$ and $y + 4 < 5$
3)	4)
5)	6)
7)	8)

March 30-April 3

Questions 9-12 are from 10-6. We didn't cover the details of this until, however, you can solve them the same way.

9) $ 4s - 13 \le 7$	10)
$4s - 13 \le 7 \qquad 4s - 13 \ge -7$	
Finish	
	12)

- Check your answers! They are all in the back of the book. These will be like the quiz tomorrow.
- > The next questions are a review of graphing linear equations.
 - Be sure that Y is by itself and is in slope-intercept form (y=mx+b).
 - Begin the graph by graphing the y-intercept (b).
 - Use the slope (m) to plot more points.

Graphing Worksheet

GreatHearts[®]

➤ Answers:

Thursday, April 9

Algebra Unit: Inequalities

Quiz 10-1 to 10-6: Inequalities and Inequalities with Absolute Value

Lesson 10-7: Graphing Linear Inequalities

Objective: Be able to graph linear inequalities in two variables.

- ➤ Time for a quiz. All you need is a pencil.
- ➢ Solve and graph

1) $2x - 5 < 7$	2) $3(x-1) \ge 6$
	$\leftarrow + + + + + + + + + + + + + + + + + + +$
3) $-4 \le 3a - 1 < 5$	4) $k + 6 \le -3$ or $k + 6 > 2$
$\langle + + + + + + + + + + + + \rangle$	
5) $ v - 6 = 3$	6) $ 3 + z < 4$
$\langle + + + + + + + + + + + + \rangle$	$\langle + + + + + + + + + + + + \rangle$

March 30-April 3

- ➢ Great Job!!!
- ➢ Now, we will begin 10-7
- > Open textbook to page 492-493 and look at the Written Exercises.

March 30-April 3

March 30-April 3

GreatHearts[®]

26) See graph. Answer: $x \le 2$	25) See graph.
	Answer:
28) slope = $m = -\frac{3}{2}$, $y - intercept =$	27) See graph
b = 0	m = b =
y = mx + b	Equation:
$y < -\frac{3}{2}x$	

> Be sure to check your answers in the back of the textbook!

> NOTE: Test next Friday, April 17 on 10-1 through 10-8 <u>Friday, April 10</u>

Algebra Unit: Inequalities

Lesson: Holiday! See you on Tuesday!