GreatHearts[®]

Algebra 9th:

May 11 - 15

Time Allotment: 40 minutes per day

Student Name: _____

Teacher Name: Mrs. Hudson

Melanie.Hudson@GreatHeartsNorthernOaks.org

Zoom sessions: Monday and Wednesday at 10AM

Chapter 11: Rational and Irrational Numbers

Packet Overview

Date	Objective(s)	Page Number
Monday, May 11	Chapter 11-7: Be able to simplify products and quotients of radicals.	2-7
Tuesday, May 12	Chapter 11-7 Continued Be able to simplify products and quotients of radicals.	8-10
Wednesday, May 13	Chapter 11-8: Be able to simplify sums and differences of radicals.	11-13
Thursday, May 14	Chapter 11-8 Continued Be able to simplify sums and differences of radicals. Minor Assessment tomorrow on 11: 7-8	14-16
Friday, May 15	Chapter 11-7 & 11-8 Review Be able to simplify products, quotients, sums, and differences of radicals.	17-18
	Minor Assessment on 11: 7-8	19-20

Additional Notes:

- ◆ Materials: Printed packet or notebook paper; pencils. (Calculators ARE NOT needed).
 - > Note: If you are using notebook paper, be sure to write pages and numbers of material.
 - **Example:** P. 6; #1) _
- ✤ Answers of odd problems are in the back of the book. Other answers will be provided at the end of each lesson.
- Minor Assessment: Located on pages 19-20. This should be taken *without* looking at previous work. No answers are provided for the quiz.

Academic Honesty

I certify that I completed this assignment independently in accordance with the GHNO Academy Honor Code. I certify that my student completed this assignment independently in accordance with the GHNO Academy Honor Code.

Student signature:

Parent signature:

Algebra Unit: Chapter 11 Rational and Irrational Numbers

Unit Overview: Rational and Irrational Numbers

We are now starting Chapter 11, Rational and Irrational Numbers. In this chapter, you will:

- 1) Properties of Rational Numbers
- 2) Decimal Forms of Rational Numbers
- 3) Rational Square Roots
- 4) Irrational Square Roots
- 5) Square Roots of Variable Expressions
- 6) The Pythagorean Theorem
- 7) Multiplying, Dividing, and Simplifying Radicals
- 8) Adding and Subtracting Radicals

Monday, May 11

Lesson: 11-7: Multiplying, Dividing, and Simplifying Radicals

Objective: Be able to simplify products and quotients of radicals.

- ➢ Hello everyone!!!
- > Turn to page 538 Written Exercises. I will show the EVENS and you can do the ODDS!

May 11 - 15

GreatHearts°

May 11 - 15

Algebra 1: Rational and Irrational Numbers

May 11 - 15

May 11 - 15

May 11 - 15

GreatHearts°

Reminder...CHECK those answers and correct them!

Tuesday, May 12

Lesson: 11-7 Continued: Multiplying, Dividing, and Simplifying Radicals

Objective: Be able to simplify products and quotients of radicals.

- 25) 26) $7\sqrt{\frac{40}{49}}$ 40 40 2510 28) $\frac{15\sqrt{6}}{\sqrt{90}}$ 27) $\int \frac{6}{90} - 6 = \frac{15}{1}$ <u>15</u> 1 $\frac{15}{1} \cdot \frac{\sqrt{15}}{\sqrt{15}} = \frac{15}{1} \cdot \frac{1}{\sqrt{15}}$ $\frac{15}{1} \cdot \frac{1}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}}$ 15
- ▶ HI! We are still working on page 539

$30) \sqrt{7}(6 - \sqrt{2}) \qquad \text{Subtraction}$	29)
$\sqrt{7}(6-\sqrt{2})$ distribute	
$\sqrt{7} \ 6 - \sqrt{7} \ \sqrt{2}$	
32) $(3\sqrt{5})(-\sqrt{10})(\sqrt{27})$ \rightarrow All multiplication	31)
$(3 \ \sqrt{5})(-1 \ \sqrt{6})(1 \ \sqrt{27})$	
3-11 5 10 27	
2539	
$-3 \sqrt{5} 2 5 333$	
$-3 \sqrt{5^2 3^2 23}$	
-3.53 523	
-4556	
$34) (5\sqrt{mn^2})(-2\sqrt{m})$	33)
$(5 \sqrt{m})$ $(-2 \sqrt{m})$	
$5 \sqrt{m} \sqrt{n^2} - 2 \sqrt{m}$	
52 Jm Jm · Jn2	
$-10 \cdot \sqrt{m^2} \sqrt{n^2}$	
-10 m n	
(-10 mn)	

May 11 - 15

GreatHearts[®]

36) $(-r\sqrt{r^2s})(-s\sqrt{r^2s})$ $(-r\sqrt{r^2})(-s\sqrt{r^2s})$ $(-r\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})$ $(-r\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})$ $(-r\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})$ $(-r\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})(-s\sqrt{r^2})$ $(-r\sqrt{r^2s})(-s\sqrt{r^2s})(-s\sqrt{r^2s})(-s\sqrt{r^2})$	35)
38) $\sqrt{x}(\sqrt{x^5}+7)$ Distribute ($\sqrt{x}(\sqrt{x^5}+7)$ $\sqrt{x}\sqrt{x^5}+\sqrt{x}$ $\sqrt{x}\sqrt{x^5}+\sqrt{x}$ $\sqrt{x^6}+\sqrt{x}$ $\sqrt{x^3}+\sqrt{x}$	37)

Don't forget to check those ODD answers in the back of the book and show corrections!

GreatHearts[®]

Wednesday, May 13

Lesson 11-8: Adding and Subtracting Radicals

Objective: Be able to simplify sums and differences of radicals.

- The last section, we were multiplying and dividing radicals. Now, we are going to ADD and SUBTRACT radicals.
- Please open the book to page 541.

6) $-2\sqrt{24} - 3\sqrt{6}$	5)
2 12	
2 4	
2.3	
-2 52 23 -3 56	
$-22\sqrt{23}-3\sqrt{6}$	
-4 56 - 356	
-7.5	
8) $3\sqrt{45} + 7\sqrt{36}$	7)
5 9 X	
33	
$3\sqrt{3^2 5} + 1/\sqrt{6^2}$	
335+76	
la 1= 142 because they	
(7V5 +72) don't both have	
98+47	
- can't add	
these	
$10) - 4\sqrt{75} + 3\sqrt{147}$	9)
3 25 3 49	
-4523 + 35723	
-4 5 13 + 3 7 13	
-20 J3 + 21 J3	
113	
13	

Algebra 1: Rational and Irrational Numbers

May 11 - 15

➢ Great! Check and correct!

May 11 - 15

GreatHearts[®]

Thursday, May 14

Lesson 11-8 Continued: Adding and Subtracting Radicals

Objective: Be able to simplify sums and differences of radicals.

▶ Hello. We are still working on page 541!

Algebra 1: Rational and Irrational Numbers

May 11 - 15

GreatHearts°

Algebra 1: Rational and Irrational Numbers

May 11 - 15

> Please make corrections!

GreatHearts[®]

Friday, May 15

Lesson: Review 11:7 – 8 and Take a Quiz

Objective: Be able to simplify products, quotients, sums, and differences of radicals.

- ➤ Go to page 661-662 and complete and correct the given problems.
- > The quiz after it will be SIMILAR.

103)	109)
110	
	115
113)	115)
113)	115)
113)	115)
113)	115)
113)	115)
113)	115)
113)	115)
113)	115)
	115)
	115)
	115)
	115)
	115)

117)	119)
,	,
123)	127)

(1) $2\sqrt{3} \cdot 4\sqrt{3}$	$ _{2}$ $ _{\frac{5}{2}}$ $ _{\frac{9}{2}}$
	$\left \frac{2}{\sqrt{9}} \sqrt{\frac{5}{5}} \right $
(2) $12\sqrt{20}$	4) $\sqrt{x}(\sqrt{x^3}-4)$
$3) \frac{1}{4\sqrt{3}}$	$\gamma \gamma \chi (\gamma \chi - 1)$

May 11 - 15

GreatHearts°

$5) /\sqrt{2} + 6\sqrt{2}$	6) $4\sqrt{28} + 6\sqrt{12}$
7 2 3	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
$(7) \sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$
(7) $\sqrt{\frac{2}{3}} - \sqrt{\frac{3}{2}}$	8) $3\sqrt{63} + 2\sqrt{28} - \sqrt{35}$

[➢] You made it through. Great job!!!